Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition.
نویسندگان
چکیده
The dendrites of spinal motoneurones are highly active, generating a strong persistent inward current (PIC) that has an enormous impact on processing of synaptic input. The PIC is subject to regulation by descending neuromodulatory systems releasing the monoamines serotonin and noradrenaline. At high monoaminergic drive levels, the PIC dominates synaptic integration, generating an intrinsic dendritic current that is as much as 5-fold larger than the current entering via synapses. Without the PIC, motoneurone excitability is very low. Presumably, this descending control of the synaptic integration via the PIC is used to adjust the excitability (gain) of motoneurones for different motor tasks. A problem with this gain control is that monoaminergic input to the cord is very diffuse, affecting many motor pools simultaneously, probably including both agonists and antagonists. The PIC is, however, exquisitely sensitive to the reciprocal inhibition mediated by length sensitive muscle spindle Ia afferents and Ia interneurones. Reciprocal inhibition is tightly focused, shared only between strict mechanical antagonists, and thus can act to 'sculpt' specific movement patterns out of a background of diffuse neuromodulation. Thus it is likely that motoneurone gain is set by the interaction between diffuse descending neuromodulation and specific and focused local synaptic inhibitory circuits.
منابع مشابه
Active dendritic integration of inhibitory synaptic inputs in vivo.
Synaptic integration in vivo often involves activation of many afferent inputs whose firing patterns modulate over time. In spinal motoneurons, sustained excitatory inputs undergo enormous enhancement due to persistent inward currents (PICs) that are generated primarily in the dendrites and are dependent on monoaminergic neuromodulatory input from the brain stem to the spinal cord. We measured ...
متن کاملNeuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite
Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interaction between PIC neuromodulation and PIC location dependence, we used a two-co...
متن کاملSpace matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons.
Dendrites of pyramidal neurons are complex, electrically active structures that can produce local and global Ca(2+) compartments. Recent studies indicate that dendrites of cortical GABAergic interneurons are also highly specialized, and that different subtypes vary in their morphology, in their intrinsic and synaptic conductances and in the Ca(2+) signals they generate. Because interneurons pla...
متن کاملThe Organization of Flight Motoneurones in the Moth, Manduca Sexta
The morphology and the innervation of the main wing depressor muscles have been studied. The motoneurones to these muscles have dendrites ipsilateral to the muscle they innervate and located in the dorsal neuropile. With the exception of one motoneurone, to the dorsal longitudinal muscle, all motoneurone cell bodies are ipsilateral to the muscle they innervate. The morphologies of individual co...
متن کاملProperties of layer 6 pyramidal neuron apical dendrites.
Layer 6 (L6) pyramidal neurons are the only neocortical pyramidal cell type whose apical dendrite terminates in layer 4 rather than layer 1. Like layer 5 pyramidal neurons, they participate in a feedback loop with the thalamus and project to other cortical areas. Despite their unique location in the cortical microcircuit, synaptic integration in dendrites of L6 neurons has never been investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 586 5 شماره
صفحات -
تاریخ انتشار 2008